Set B Solution jj

Estimated read time: 6 min

Below is a step‐by‐step solution to each part of the multi–problem question.


1. Normal Zeeman Splitting of the Calcium 4226 Å Line

For the normal Zeeman effect (which applies when the involved level has zero net spin), the energy shift between adjacent Zeeman components is given by

ΔE=μBB,\Delta E = \mu_B B,

where

  • μB9.274×1024J/T\mu_B \approx 9.274\times10^{-24}\,\mathrm{J/T} is the Bohr magneton, and
  • B=1.21TB = 1.21\,\mathrm{T} is the magnetic field.

Thus, the energy splitting is

ΔE9.274×1024J/T×1.21T1.12×1023J.\Delta E \approx 9.274\times10^{-24}\,\mathrm{J/T} \times 1.21\,\mathrm{T} \approx 1.12\times10^{-23}\,\mathrm{J}.

To relate this energy shift to a wavelength shift, we use the relation

ΔE=hcλ2Δλ,\Delta E = \frac{hc}{\lambda^2}\Delta\lambda,

where

  • h=6.626×1034Jsh=6.626\times10^{-34}\,\mathrm{J\cdot s},
  • c=3.00×108m/sc=3.00\times10^8\,\mathrm{m/s},
  • and the wavelength λ=4226A˚=4.226×107m\lambda = 4226\,\text{Å} = 4.226\times10^{-7}\,\mathrm{m}.

Solving for Δλ\Delta\lambda:

Δλ=λ2hcΔE.\Delta\lambda = \frac{\lambda^2}{hc}\Delta E.

Calculating step‐by‐step:

  1. λ2=(4.226×107m)21.787×1013m2\lambda^2 = (4.226\times10^{-7}\,\mathrm{m})^2 \approx 1.787\times10^{-13}\,\mathrm{m^2}.
  2. hc6.626×1034Js×3.00×108m/s1.9878×1025Jmhc \approx 6.626\times10^{-34}\,\mathrm{J\cdot s} \times 3.00\times10^8\,\mathrm{m/s} \approx 1.9878\times10^{-25}\,\mathrm{J\cdot m}.
  3. Then, Δλ1.787×1013m21.9878×1025Jm×1.12×1023J1.01×1011m.\Delta\lambda \approx \frac{1.787\times10^{-13}\,\mathrm{m^2}}{1.9878\times10^{-25}\,\mathrm{J\cdot m}} \times 1.12\times10^{-23}\,\mathrm{J} \approx 1.01\times10^{-11}\,\mathrm{m}.

In other words, the Zeeman splitting corresponds to an energy difference of about 1.12×1023J1.12\times10^{-23}\,\mathrm{J} and a wavelength shift of approximately 1.01×1011m1.01\times10^{-11}\,\mathrm{m} (or 0.0101 Å).


2. The Hall Effect and Hall Voltage

Definition:
The Hall effect occurs when a current–carrying conductor or semiconductor is placed in a magnetic field that is perpendicular to the current. The magnetic Lorentz force deflects the moving charge carriers (electrons or holes) to one side of the material. This deflection causes a buildup of charge and produces a transverse potential difference called the Hall voltage.

Hall Voltage:
The Hall voltage VHV_H is given by

VH=RHIBd,V_H = R_H \frac{IB}{d},

where

  • II is the current,
  • BB is the magnetic field,
  • dd is the thickness of the conductor,
  • and the Hall coefficient RHR_H is defined as

RH=1nq,R_H = \frac{1}{nq},

with nn being the charge carrier density and qq the charge of the carriers.

Determining the Nature of Charge Carriers:
The sign of the Hall coefficient RHR_H reveals the type of charge carrier:

  • A negative RHR_H indicates that the carriers are negatively charged (electrons).
  • A positive RHR_H indicates that the carriers are positively charged (holes).

Thus, by measuring the Hall voltage and knowing the current, magnetic field, and sample dimensions, one can determine both the density and the sign of the charge carriers in a material.


3. Free Particle in an Infinite Potential Well

Consider a one-dimensional infinite potential well (particle in a box) of width LL:

  • The potential is V(x)=0V(x)=0 for 0<x<L0<x<L and V(x)=V(x)=\infty outside this interval.

The allowed energy levels are given by

En=n2π222mL2,n=1,2,3,E_n = \frac{n^2\pi^2\hbar^2}{2mL^2},\quad n=1,2,3,\dots

and the corresponding normalized wave functions are

ψn(x)=2Lsin(nπxL),0<x<L,\psi_n(x)=\sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right),\quad 0<x<L,

with ψ(x)=0\psi(x)=0 elsewhere.


4. Fermi Energy of Copper

For a free electron gas, the Fermi energy EFE_F is given by

EF=22me(3π2n)2/3,E_F = \frac{\hbar^2}{2m_e}(3\pi^2 n)^{2/3},

where

  • n=8.4×1028m3n = 8.4\times10^{28}\,\mathrm{m}^{-3} is the electron density,
  • =1.055×1034Js\hbar = 1.055\times10^{-34}\,\mathrm{J\cdot s},
  • and me=9.11×1031kgm_e = 9.11\times10^{-31}\,\mathrm{kg}.

Step 1. Calculate the factor:

3π2n3π2×8.4×1028m32.49×1030m3.3\pi^2 n \approx 3\pi^2 \times 8.4\times10^{28}\,\mathrm{m}^{-3} \approx 2.49\times10^{30}\,\mathrm{m}^{-3}.

Step 2. Raise to the 23\frac{2}{3} power:

(3π2n)2/31.84×1020m2.(3\pi^2 n)^{2/3} \approx 1.84\times10^{20}\,\mathrm{m}^{-2}.

Step 3. Compute EFE_F:

EF(1.055×1034)22×9.11×1031×1.84×10201.12×1018J.E_F \approx \frac{(1.055\times10^{-34})^2}{2\times9.11\times10^{-31}} \times 1.84\times10^{20} \approx 1.12\times10^{-18}\,\mathrm{J}.

Converting to electron volts (using 1eV1.602×1019J1\,\mathrm{eV} \approx 1.602\times10^{-19}\,\mathrm{J}):

EF1.12×10181.602×10197.0eV.E_F \approx \frac{1.12\times10^{-18}}{1.602\times10^{-19}} \approx 7.0\,\mathrm{eV}.

(b) Temperature Comparison:
To find the temperature TT at which the average thermal energy kTkT equals the Fermi energy, set

kT=EF.kT = E_F.

Using k=1.38×1023J/Kk=1.38\times10^{-23}\,\mathrm{J/K}:

T1.12×1018J1.38×1023J/K8.12×104K.T \approx \frac{1.12\times10^{-18}\,\mathrm{J}}{1.38\times10^{-23}\,\mathrm{J/K}} \approx 8.12\times10^4\,\mathrm{K}.

Thus, kTEFkT \approx E_F at about 8.1×104K8.1\times10^4\,\mathrm{K}.


5. The Classical Free Electron Model

The classical free electron model (also known as the Drude model) makes the following assumptions:

  • Electrons as Classical Particles: Conduction electrons in a metal are treated as a gas of free, non–interacting particles.
  • Random Motion and Collisions: Electrons move randomly and occasionally collide with the fixed ions in the lattice. Collisions are characterized by an average time between collisions, called the mean free time τ\tau.
  • Ohm’s Law: The model explains electrical conductivity by relating the drift velocity acquired by electrons under an applied electric field to τ\tau and the density of free electrons.
  • Limitations: While it successfully predicts some macroscopic properties such as electrical and thermal conductivity, the model cannot explain all observed phenomena (for example, it fails to account for quantum effects and the temperature dependence of the electronic heat capacity).

6. Dynamics of a Rotating Wheel with a Descending Mass

A wheel of radius R=0.4mR=0.4\,\mathrm{m} and moment of inertia I=1.2kgm2I=1.2\,\mathrm{kg\cdot m^2} has a rope wound around it with a 2kg2\,\mathrm{kg} weight attached. The weight descends a distance h=1.5mh=1.5\,\mathrm{m}. Assume no friction and use g=9.8m/s2g=9.8\,\mathrm{m/s^2}.

Energy Conservation:

The loss in gravitational potential energy is

mgh=2kg×9.8m/s2×1.5m=29.4J.mgh = 2\,\mathrm{kg} \times 9.8\,\mathrm{m/s^2} \times 1.5\,\mathrm{m} = 29.4\,\mathrm{J}.

This energy converts into:

  • Translational kinetic energy of the mass: 12mv2\frac{1}{2}mv^2,
  • Rotational kinetic energy of the wheel: 12Iω2\frac{1}{2}I\omega^2.

Since the rope unwinds without slipping, the linear speed vv of the mass is related to the angular speed ω\omega of the wheel by

v=ωR.v = \omega R.

Thus, the total kinetic energy is

12mv2+12I(vR)2=12v2(m+IR2).\frac{1}{2}mv^2 + \frac{1}{2}I\left(\frac{v}{R}\right)^2 = \frac{1}{2}v^2\left(m + \frac{I}{R^2}\right).

Setting this equal to the lost potential energy:

29.4=12v2(2+1.2(0.4)2).29.4 = \frac{1}{2}v^2\left(2 + \frac{1.2}{(0.4)^2}\right).

Calculate I/R2I/R^2:

1.2(0.4)2=1.20.16=7.5.\frac{1.2}{(0.4)^2} = \frac{1.2}{0.16} = 7.5.

Thus,

29.4=12v2(2+7.5)=12v2(9.5).29.4 = \frac{1}{2}v^2 (2 + 7.5) = \frac{1}{2}v^2 (9.5).

Solving for vv:

v2=29.4×29.558.89.56.19,v^2 = \frac{29.4\times2}{9.5} \approx \frac{58.8}{9.5} \approx 6.19, v6.192.49m/s.v \approx \sqrt{6.19} \approx 2.49\,\mathrm{m/s}.

Then, the rotational (angular) speed is

ω=vR2.490.46.23rad/s.\omega = \frac{v}{R} \approx \frac{2.49}{0.4} \approx 6.23\,\mathrm{rad/s}.


7. Electric Field from Two Point Charges

We have two positive charges on the x–axis:

  • q1=3×109Cq_1 = 3\times10^{-9}\,\mathrm{C} at x=0x=0,
  • q2=5×109Cq_2 = 5\times10^{-9}\,\mathrm{C} at x=4mx=4\,\mathrm{m}.

(a) Electric Field at the Midpoint (x=2mx=2\,\mathrm{m})

For a point charge, the electric field is

E=kqr2,k9×109Nm2/C2.E=\frac{kq}{r^2},\quad k\approx9\times10^9\,\mathrm{N\cdot m^2/C^2}.

  • From q1q_1:
    Distance r1=2mr_1=2\,\mathrm{m}

    E1=9×109×3×109(2)2=2746.75N/C.E_1 = \frac{9\times10^9\times3\times10^{-9}}{(2)^2} = \frac{27}{4} \approx 6.75\,\mathrm{N/C}.

    The field points to the right (away from q1q_1).

  • From q2q_2:
    Distance r2=42=2mr_2=4-2=2\,\mathrm{m}

    E2=9×109×5×109(2)2=45411.25N/C.E_2 = \frac{9\times10^9\times5\times10^{-9}}{(2)^2} = \frac{45}{4} \approx 11.25\,\mathrm{N/C}.

    Here the field points to the left (away from q2q_2, since the point is to its left).

The net electric field at x=2mx=2\,\mathrm{m} is

Enet=E1E26.7511.25=4.5N/C.E_{\text{net}} = E_1 - E_2 \approx 6.75 - 11.25 = -4.5\,\mathrm{N/C}.

The negative sign indicates that the net field is 4.5N/C4.5\,\mathrm{N/C} directed to the left.

(b) Location Where the Resultant Field is Zero

Let xx be the point (with 0<x<40<x<4) where the net field vanishes. The field due to q1q_1 (at x=0x=0) at a point xx is

E1=kq1x2E_1=\frac{kq_1}{x^2}

(directed to the right) and the field due to q2q_2 (at x=4mx=4\,\mathrm{m}) is

E2=kq2(4x)2E_2=\frac{kq_2}{(4-x)^2}

(directed to the left). Setting the magnitudes equal for cancellation:

q1x2=q2(4x)2.\frac{q_1}{x^2} = \frac{q_2}{(4-x)^2}.

Plug in q1=3×109Cq_1=3\times10^{-9}\,\mathrm{C} and q2=5×109Cq_2=5\times10^{-9}\,\mathrm{C}:

3x2=5(4x)2(4xx)2=53.\frac{3}{x^2} = \frac{5}{(4-x)^2} \quad \Longrightarrow \quad \left(\frac{4-x}{x}\right)^2 = \frac{5}{3}.

Taking the square root,

4xx=531.29.\frac{4-x}{x} = \sqrt{\frac{5}{3}} \approx 1.29.

Solve for xx:

4x=1.29x4=2.29x,4-x = 1.29\,x \quad \Longrightarrow \quad 4 = 2.29\,x, x42.291.75m.x \approx \frac{4}{2.29} \approx 1.75\,\mathrm{m}.

Thus, the net electric field is zero at approximately 1.75m1.75\,\mathrm{m} from the origin along the x–axis.


8. Wavelengths of the Paschen Series of Hydrogen

For the Paschen series, electrons drop to the nf=3n_f=3 level. The Rydberg formula is

1λ=R(1321n2),n>3,\frac{1}{\lambda} = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right),\quad n>3,

with R=1.09×107m1R=1.09\times10^7\,\mathrm{m}^{-1}.

Shortest Wavelength (Series Limit):
For nn\to\infty,

1λmin=R(190)=R9,\frac{1}{\lambda_{\text{min}}} = R\left(\frac{1}{9} - 0\right) = \frac{R}{9}, λmin=9R=91.09×1078.26×107m(826nm).\lambda_{\text{min}} = \frac{9}{R} = \frac{9}{1.09\times10^7} \approx 8.26\times10^{-7}\,\mathrm{m}\quad (826\,\mathrm{nm}).

Longest Wavelength (Transition n=4n=3n=4 \to n=3):

1λmax=R(19116)=R(169144)=7R144,\frac{1}{\lambda_{\text{max}}} = R\left(\frac{1}{9} - \frac{1}{16}\right) = R\left(\frac{16-9}{144}\right) = \frac{7R}{144}, λmax=1447R=1447×1.09×1071.89×106m(1890nm).\lambda_{\text{max}} = \frac{144}{7R} = \frac{144}{7\times1.09\times10^7} \approx 1.89\times10^{-6}\,\mathrm{m}\quad (1890\,\mathrm{nm}).


9. Uncertainty in Velocity When Δx=λdB\Delta x = \lambda_{\text{dB}}

The de Broglie wavelength for a particle of mass mm moving with velocity vv is

λ=hmv.\lambda = \frac{h}{mv}.

If the uncertainty in position is taken to be Δx=λ\Delta x = \lambda, then by the Heisenberg uncertainty principle

ΔxΔp2,\Delta x\,\Delta p \ge \frac{\hbar}{2},

with Δp=mΔv\Delta p = m\,\Delta v. Thus,

Δv2mΔx.\Delta v \ge \frac{\hbar}{2m\,\Delta x}.

Substitute Δx=λ=hmv\Delta x = \lambda = \frac{h}{mv} and note that =h2π\hbar = \frac{h}{2\pi}:

Δvh/(2π)2m(h/(mv))=h2πmv2mh=v4π.\Delta v \ge \frac{h/(2\pi)}{2m\,(h/(mv))} = \frac{h}{2\pi} \cdot \frac{mv}{2mh} = \frac{v}{4\pi}.

So the uncertainty in the velocity is

Δvv4π.\Delta v \approx \frac{v}{4\pi}.


Summary of Answers

  1. Zeeman Splitting:

    • Energy splitting: ΔE1.12×1023J\Delta E \approx 1.12\times10^{-23}\,\mathrm{J}.
    • Wavelength shift: Δλ1.01×1011m\Delta\lambda \approx 1.01\times10^{-11}\,\mathrm{m} (≈0.0101 Å).
  2. Hall Effect:

    • Definition: Generation of a transverse voltage (Hall voltage) in a current–carrying conductor placed in a perpendicular magnetic field.
    • Determination: The sign of the Hall coefficient RH=1/(nq)R_H = 1/(nq) shows whether the charge carriers are negative (electrons) or positive (holes).
  3. Infinite Potential Well:

    • Energies: En=n2π222mL2E_n = \frac{n^2\pi^2\hbar^2}{2mL^2}.
    • Wave functions: ψn(x)=2Lsin(nπxL)\psi_n(x)=\sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right).
  4. Fermi Energy of Cu:

    • EF1.12×1018JE_F \approx 1.12\times10^{-18}\,\mathrm{J} (≈7.0 eV).
    • Corresponding temperature: T8.1×104KT \approx 8.1\times10^4\,\mathrm{K}.
  5. Classical Free Electron Model:

    • Treats conduction electrons as a classical gas that randomly moves and collides with fixed ions; explains electrical and thermal conductivity via kinetic theory.
  6. Rotating Wheel Dynamics:

    • Downward velocity of the weight: v2.49m/sv \approx 2.49\,\mathrm{m/s}.
    • Angular velocity of the wheel: ω6.23rad/s\omega \approx 6.23\,\mathrm{rad/s}.
  7. Electric Field from Two Charges:

    • (a) At x=2mx=2\,\mathrm{m}: Net field Enet4.5N/CE_{\text{net}} \approx 4.5\,\mathrm{N/C} to the left.
    • (b) Field zero at x1.75mx \approx 1.75\,\mathrm{m} from the origin.
  8. Paschen Series Wavelengths:

    • Shortest wavelength (series limit): λmin826nm\lambda_{\text{min}} \approx 826\,\mathrm{nm}.
    • Longest wavelength (transition from n=4n=4 to n=3n=3): λmax1890nm\lambda_{\text{max}} \approx 1890\,\mathrm{nm}.
  9. Uncertainty in Velocity:

    • If Δx=λ=hmv\Delta x = \lambda = \frac{h}{mv}, then
      Δvv4π\Delta v \approx \frac{v}{4\pi}.

Each result has been derived using standard physical relations and assumptions.

Post a Comment

Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.